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ABSTRACT: Carbon−carbon σ-single bonds are crucial for
constructing molecules like ethane derivatives (R3C−CR3),
which are composed of tetrahedral four-coordinate carbons.
Molecular functions, such as light absorption or emission, originate
from the π-bonds existing in ethylene derivatives (R2C�CR2). In
this study, a relatively stable cyclopentane-1,3-diyl species with π-
single bonding system (C−π−C) with planar four-coordinate
carbons is constructed. This diradicaloid is energetically more
stable than the corresponding σ-single bonding system. The π-
electron single bonding system provides deeper insights into the
chemical bonding and the physical properties derived from the
small energy gaps between the bonding and antibonding molecular
orbitals.

■ INTRODUCTION
Carbon atoms can be connected through two types of bonds:
σ- and π-bonds (Figure 1a). The σ-bond, as observed in ethane
derivatives (R3C−CR3), has a high bonding energy (368 kJ
mol−1 for H3C−CH3)

1 and is crucial in constructing
molecules. π-Electron systems, such as ethylene derivatives
R2C�CR2 (π-bond energy in H2C�CH2: 272 kJ mol−1),2 are
significant because they impart molecular functions such as
light absorption and emission and facilitate electron transfer
and chemical reactions. Therefore, the development of new π-
conjugated molecules, such as those capable of harvesting solar
energy, is a highly coveted research area.3−5

As σ-bonds are strong, C−C σ-single bonding that exists in
the ethane molecule is possible. However, π-bonding between
two carbon atoms is believed to occur only through strong σ-
bonds, which primarily connect carbons. Examples of such
bonding are ethylene derivatives. In 2000, during the research
on cyclopentane-1,3-diradicals (DR-1),6 which are crucial
intermediates in the C−C bond homolysis7,8 of σ-1, we
realized that a π-single bonding structure (π-1) was
theoretically possible in the singlet state (S-DR-1).9 This
structure comprises two planar four-coordinate carbons10−12

linked only by a π-bond (C−π−C), without any σ-bond
(Figure 1b). The highest occupied molecular orbital
(HOMO)−lowest unoccupied molecular orbital (LUMO)
energy gap of C−π−C bonds is expected to be much smaller
than those of C−C σ-bonds (C−C distance d ≈ 155 pm) and
C�C σ,π-bonds (d ≈ 135 pm), and this can be attributed to
the long distance (d ≈ 220 pm) between the carbons; i.e., the

energy decreases in the order ΔEσ
HL > ΔEσπ

HL > ΔEπ
HL.

Consequently, the π → π* absorption band appears in the
visible to near-infrared region (Figure 1a). Compound π-2 was
prepared to experimentally verify these results (Figure 1c); this
compound exhibited a strong absorption band at 500−700 nm,
with λmax at ∼ 580 nm (ε ≈ 5000 M−1 cm−1).13,14 Quantum
chemical calculations accurately reproduced the electronic
excitation energy from the HOMO (π-bonding orbital) to
LUMO (π-antibonding orbital) in the π-electron system,
demonstrating that π-2 is not a perfect closed-shell singlet
molecule that exhibits the character of an open-shell singlet
diradical depicted in S-DR-2.15 Hereon, the diradical
resonance structure is omitted to simplify the explanation of
the π-single bonding character. Because the σ-bond is stronger
than the π bond, π-2 was short-lived with a lifetime of ∼ 300 ns
at 293 K in benzene, yielding quantitatively more energetically
stable σ-bonded σ-2. Compound σ-2 was computed to be
energetically more stable than π-2 by 63.7 kJ mol−1. In contrast
to short-lived carbon-centered radical species, several heter-
oatom-centered π-single bonds in four-membered heterocycles
have been isolated since 2002, benefiting from the unique
characteristics of heteroatoms (Figure 1d).16−21 In this study,
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we reveal that π-3, embedded in a macrocyclic structure, was
energetically more stable than the corresponding σ-bonding
compound (σ-3). Compound π-3 exhibits a long lifetime of
more than 4 s at 293 K (Figure 1e). The macrocyclic structure
was designed to significantly increase the molecular strain of σ-
3 to alter the energy relationship between the σ- and π-
bonds.22

■ RESULTS AND DISCUSSION
Azoalkane AZ-3a (R=C8H17), a precursor of π-3a, was
synthesized in 12 steps (Scheme S1). The structural assign-
ment of AZ-3a was established through 1H-nuclear magnetic
resonance (NMR) spectroscopy, 13C NMR spectroscopy, mass
spectrometry (MS), and single-crystal X-ray structural analysis
(Figure S1). Compound π-3a was generated through the
photochemical denitrogenation of AZ-3a (0.5 mM) in benzene
under vacuum conditions and analyzed through transient
absorption (TA) spectroscopy via the laser flash photolysis
(LFP) technique conducted using a Nd/YAG laser (λexc = 355
nm, 4.5 mJ/pulse, 5 ns pulse width; Figures 2 and S2). The
strong absorption band at ∼ 580 nm, assigned to π-3a, was
observed after LFP (Figure 2a). The lifetime (τ = 1/kd) of π-3a
was determined to be 262 ms at 293 K (Figure 2b), which is
significantly longer than those of π-2 and π-4a (lacking a
macrocyclic ring; ∼ 300 and ∼ 700 ns at 293 K, respectively

(Figure S3). The triplet state was not detected by EPR (Figure
S4). Temperature dependence on τ was examined in a toluene
solution under vacuum conditions (Figure S5) to obtain the
activation parameters of the fall process. Surprisingly, the effect
of the temperature on τ was negligible. The τ values were 250
ms at 304 K, 273 ms at 292 K, 320 ms at 279 K, 340 ms at 267
K, and 365 ms at 254 K. Using these values, activation
parameters Ea, log(A/s−1), ΔH⧧, ΔS⧧, and ΔG⧧

298 were
determined to be 5.0 kJ mol−1, 1.45, 2.7 kJ mol−1, −224.9 J
mol−1 K−1, and 69.7 kJ mol−1, respectively. This negligible
temperature effect indicates that the rate-determining step
does not involve thermally activated bond-making or bond-
breaking processes.

We noticed that the lifetime of π-3a was significantly
dependent on the intensity of the monitor light in the LFP
experiments (Figure 2b). The τ values were 0.17 s at 37 mW,
0.41 s at 12 mW, and 1.5 s at 6 mW at 293 K. In addition,
photochemical bleaching of the 580 nm species was observed
when the second laser flash (λexc = 580 nm from the optical
parametric oscillator laser) was introduced 500 ms after the
first laser flash at λexc = 355 nm (Figure S6). To appropriately
obtain the thermal decay process of π-3a, we modified the LFP
setup by removing the focal lens, which effectively reduced the
monitor light intensity and prevented the diffusion effects that
could shorten the lifetime. The lifetime of π-3a was found to

Figure 1. (a) HOMO−LUMO gaps; (b) π-single bonding in cyclopentane-1,3-diyl diradicals; (c) detectable π-single bonding; (d) isolated π-single
bonded compounds in heterocyclic structures; (e) this study: long-lived π-single bonding.
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be 4.0 s at 293 K (at 6 mW of monitor light with no focal lens;
green signal in Figure 2b). The temperature dependence of the

lifetime (τ = 1/kd) of π-3a in an argon-saturated toluene
solution was reinvestigated in the temperature range of 315−

Figure 2. Transient absorption spectroscopy via LFP (355 nm) of AZ-3a (0.5 mM). (a) Transient absorption spectrum in benzene after 1 ms at
293 K; (b) effect of monitor light intensity on the lifetime of π-3a in toluene at 293 K; (c) temperature dependence of the lifetime of π-3a in
toluene; and (d) generation of π-3a in the photolysis of AZ-3a in toluene.

Scheme 1. Photochemical Denitrogenation Reaction of AZ3a

aThe values in parentheses are relative electronic energy (Erel) after zero point energy corrections calculated at the (R,U)B3LYP/6-31G(d) level of
theory for b (R=H).
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360 K to minimize the photochemical decomposition of π-3a
(Figure 2c). From these experiments, we determined the
activation parameters Ea, log(A/s−1), ΔH⧧, ΔS⧧, and ΔG⧧

298 of
the decay (kd) of π-3a to be 74.9 kJ mol−1, 13.1, 72.1 kJ mol−1,
−4.1 J mol−1 K−1, and 73.4 kJ mol−1, respectively, from the
Arrhenius (Figure 2c) and Eyring plots (Figure S7). Using the
obtained activation parameters, the lifetime of π-3a at 293 K
was extrapolated to be 1.9 s, which is slightly shorter than the
experimentally obtained value of 4.0 s. This indicated the
occurrence of slight photochemical decomposition during the
temperature dependence experiments at 30 mW of monitor
light.

During the TA analysis via LFP of AZ-3a, surprisingly, the
rising process of π-3a (λmax = 580 nm) was observed at the μs
time scale (Figure 2d). For example, the rising rate constant
(kr) at 288 K for benzene was found to be kr = 1.28 × 105 s−1

(1/kr = 7.8 μs). The previously reported photochemical
denitrogenation of CH3−N�N−CH3 involves a stepwise
denitrogenation process, CH3−N�N−CH3 → CH3−N�N·
+ ·CH3 → 2CH3· + N2, at the fs time scale.23 Therefore, the
rising process observed at 580 nm during LFP of AZ-3a did
not correspond to a denitrogenation process (Scheme 1). The
temperature dependence of kr was investigated in toluene
solution under vacuum conditions to gain further insights into
the rising process at 580 nm (Figures 2d and S8). Interestingly,
the rate constants were found to be significantly dependent on
the temperature, and activation parameters Ea, log(A/s−1),
ΔH⧧, ΔS⧧, and ΔG⧧

298 were determined to be 38.4 kJ mol−1,
12.1, 36.1 kJ mol−1, −21.2 J mol−1 K−1, and 42.4 kJ mol−1,
respectively. The large pre-exponential value, log(A/s−1),
clearly indicates that the rising process of π-3a at 580 nm is
not the spin-forbidden intersystem crossing process from T-
DR3a to π-3a, but rather a chemical transformation.

In our previous study, we successfully elucidated the
reactivity of π-2, verifying that this compound was thermally
equilibrated with the corresponding puckered diradical puc-2
and the most stable ring-closing compound σ-2.14 Therefore,
the LFP results for AZ-3a can be rationalized using the
mechanism shown in Scheme 1. Consequently, the rising
process of π-3a observed during the TA analysis was attributed
to the transformation from σ-3a to π-3a via puc-3a, suggesting
that σ-3a was energetically less stable than π-3a. This
conclusion was further supported by the fact that no σ-3a
was detected; however, relatively complex products were
obtained in the photochemical denitrogenation of AZ-3a.
NMR and MS analyses revealed these products to be a regio-
and stereochemical mixture of methoxy-migrated vinyl ethers 4
([M + Na]+ = 818.50842 (Figure S9), Scheme 1), suggesting
the generation of the methoxy radical CH3O·. Furthermore, we
conducted photochemical denitrogenation of AZ-3a in the
presence of a radical trapping agent, N-tert-butyl-α-phenyl-
nitrone (PBN), to verify the generation of CH3O·. 1,1-
Dimethylethyl methoxyphenylmethyl nitroxide (5), a known
compound, was detected through electron paramagnetic
response with hyperfine coupling constants of aN = 13.6 G
and aHβ = 2.0 G (Figure S10).24,25

As mentioned above, time-resolved TA analysis revealed the
unprecedented rise and fall dynamics of relatively stable π-3a.
Quantum chemical calculations were conducted for the
structural optimization of π-3b (R=H), T-DR3b, σ-3b, and
puc-3b at the (R,U)B3LYP/6-31G(d) level of theory26,27 to
obtain deeper insights into this unprecedented phenomenon
and unique bonding system (Scheme 1 and Figure S11). The

complete active space self-consistent field (CASSCF)
method28 was utilized to evaluate the electronic configuration
of π-3b (Figure 3).

Consistent with the experimental findings for π-3a, the
singlet state of π-3b was energetically more stable than its
triplet state T-DR3b and σ-3b by 9.3 and 38.4 kJ mol−1,
respectively. As mentioned in the Introduction section, σ-2 was
computed to be energetically more stable than π-2 by 63.7 kJ
mol−1 at the same level of theory. This switch in the energy
relationship between the σ- and π-bonded compounds was
rationalized by the strain energy (SE) induced by the
macrocyclic structure29−33 of σ-3b. The SE of σ-bonded σ-
3b was computed to be 75.6 kJ mol−1 higher than that of π-3b
(Table S2). The energetic stability of π-3b supports the idea
that the rising process of π-3a is induced by the less
energetically stable σ-3a via puc-3a (Scheme 1). The transition
state for the transformation from puc-3b to π-3b was
computed at the same theoretical level to confirm the reaction
pathway from puc-3 to π-3 (Scheme 1). A transition-state
structure with one imaginary frequency was observed in which
one of the two methoxy (OCH3) groups passed through the
macrocyclic structure (Figure S11 and Movie S1). The total
electronic energy of the transition state, including the zero-
point vibrational energy, was 37.1 kJ mol−1 higher than that of
puc-3b in the gas phase (Scheme 1), which was 90.1 kJ mol−1

higher than that of π-3b. The computed activation parameters
ΔH⧧ and ΔG⧧

298 at 298.150 K and 1.0 atm were found to be
34.7 and 42.6 kJ mol−1, respectively. The computed values are
very consistent with the experimentally obtained activation
values (Figure 1d).

The potential energy surfaces of the bond breaking between
the acetal carbon and CH3O oxygen were computed in both
the singlet and triplet states, π-3b and T-DR3b, respectively
(Scheme 1 and Figure S12), to comprehend the decay process
of π-3a (Figure 1c). Interestingly, the concerted 1,2-migrations
of the CH3O group with an activation energy of 92.4 kJ mol−1

for the exo isomer and 85.5 kJ mol−1 for the endo isomer
directly produced 4 via the reaction from π-3b. The lower

Figure 3. Visualized bonding orbital (π) and antibonding orbital (π*)
and their electron occupation numbers in π-3b computed at the
CASSCF(2/2)/6-31G(d) level of theory.
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activation energies for bond breaking in T-DR3b (74.4 kJ
mol−1 for exo-CH3O and 73.3 kJ mol−1 for endo-CH3O) led to
the generation of a pair of radicals, namely, the methoxy radical
(CH3O·) and the allylic radical. Indeed, CH3O· was
experimentally trapped by PBN, yielding nitroxide 5 during
photolysis of AZ-3a. The transition-state energy of the bond-
breaking process in T-DR3b (ΔH⧧ = 75.7 kJ mol−1, ΔG⧧

298 =
70.2 kJ mol−1 for exo-CH3O and ΔH⧧ = 74.8 kJ mol−1, ΔG⧧

298
= 67.8 kJ mol−1 for endo-CH3O] was well consistent with the
experimentally obtained activation values for the decay process
of π-3a [Ea = 74.9 kJ mol−1, ΔH⧧ = 72.1 kJ mol−1, and ΔG⧧

298
= 73.4 kJ mol−1].

To understand the nature of the π-single bonding in π-3b,
the CASSCF calculation was conducted at the CASSCF(2,2)/
6-31G(d) level of theory on π-3b optimized by density
functional theory at the UB3LYP/6-31G(d) level of theory. As
shown in Figure 3, the electron occupation numbers in the
bonding orbital (π) and antibonding orbital (π*) were 1.46
and 0.54, respectively. The bond order between the two radical
carbons was 0.46. The diradical character (yο)

34 was computed
to be 0.24 and 0.37 at the CASSCF(2,2)/6-31G(d) and
UB3LYP/6-31G(d) level of theory, respectively. As shown in
Figure 3, the orbital coefficients were largely localized on the π-
single bonding moiety because of metasubstitution in the
macrocyclic moiety.

■ CONCLUSIONS
In conclusion, we developed a novel, relatively stable C−C π-
single bonding system π-3a with singlet 1,3-diradical character.
The π-single bonding species exhibits exceptional stability at
room temperature, realized by switching the energy relation-
ship between the σ- and π-bonds. Generally, the σ-bond is
considerably more stable than the π-bond. However, the
energy relationship between these bonds was reversed, owing
to the molecular architecture derived from the macrocyclic
ring. The newly developed π-bonding system has a significantly
small HOMO−LUMO gap, leading to a new paradigm of
molecular design for visible-to-NIR photoresponse and highly
redox active compounds.
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